Skip to content

Class X – Maths Formulas – Trigonometry

Trigonometric Ratios

In a right angle triangle ABC where C = 900

We can define following term for angle A.

Base/Adjacent: Side adjacent to angle

Perpendicular/Opposite: Side opposite to right angle

Hypotenuse: Side opposite to right angle.

We can define the trigonometric ratios for angle A as

sin A = Perpendicular/Hypotenuse = BC/AB

cosec A = Hypotenuse/Perpendicular = AB/BC

cos A = Base/Hypotenuse = AC/AB

sec A = Hypotenuse/Base = AB/AC

tan A = Perpendicular/Base = AB/AC

cot A = Base/Perpendicular = AC/AB

Reciprocal of functions:

The reciprocal of sin A is cosec A

sin A = 1/cosec A

The reciprocal of cos A is sec A

cos A = 1/sec A

The reciprocal of tan A is cot A

tan A = 1/cot A

These are valid for acute angles

We can define tan A = sin A/cos A

cot A = cos A/sin A

Value of sin and cos is always less than 1

Trigonometric Ratios of complimentary angles:

sin (90 – A) = cos A

cos (90 – A) = sin A

tan (90 – A) = cot A

cot (90 – A) = tan A

sec (90 – A) = cosec A

cosec (90 – A) = sec A

Trigonometric Identities

sin2 A + cos 2A = 1

1 + tan2 A = sec2 A

1 + cot2 A = cosec2 A

Trigonometric Ratios of common angles:

Double Angle Formulas:

sin 2A = 2 sin A cos A = [2 tan A/(1 + tan2 A)]

cos 2A = cos2 A – sin2 A = 1 – 2 sin2 A = 2 cos2 A – 1 = [(1 – tan2 A)/ [(1 – tan2 A)]

tan 2A = 2 tan A/ (1 – tan2 A)

Triple Angle Formulas:

sin 3A = 3 sin A – 4 sin3 A

cos 3A = 4 cos3 A – 3 cos A

tan 3A = [3 tan A – tan3 A]/ [1 – 3 tan2 A]