Quadratic Equations
1. Quadratic Polynomial | P(๐ฅ) = a ๐ฅ2 + b ๐ฅ + c, where a โ 0 |
2. Quadratic Equation | a ๐ฅ2 + b ๐ฅ + c, where a โ 0 |
3. Solution or root of the Quadratic Equation | A real number ฮฑ is called the root or solution of the quadratic equation if a ฮฑ2 + b ฮฑ + c = 0 |
4. Zeroes of the polynomial P(๐ฅ) | The root of the quadratic equation are called zeroes. |
5. Maximum roots of quadratic equations | A polynomial of degree 2 can have max 2 roots. |
6. Condition for real roots | A quadratic equation has real roots if b2 โ 4ac > 0 |
Solving Quadratic Equation
Factorization |
This method we factorize the equation by splitting the middle term b. In, a ๐ฅ2 + b ๐ฅ + c = 0 Example: 6 ๐ฅ2 โ ๐ฅ โ 2 = 0 |
Steps: 1. First we need to multiply the coefficient of a and c. In this case: 6 x (-2) = -12 2. Splitting the middle term so that multiplication is -12 and the difference is the coefficient b 6 ๐ฅ2 + 3 ๐ฅ – 4 ๐ฅ โ 2 = 0 3 ๐ฅ (2 ๐ฅ + 1) โ 2(2 ๐ฅ + 1) = 0 (3 ๐ฅ โ 2) (2 ๐ฅ + 1) = 0 3. Roots of the equation can be found by equating the factors to zero 3 ๐ฅ โ 2 = 0 => ๐ฅ = 2/3 2 ๐ฅ + 1 = 0 => ๐ฅ = -1/2 |
Square Method |
In this method we create square on LHS and RHS and then find the value. |
a ๐ฅ2 + b ๐ฅ + c = 0 1) ๐ฅ2 + (b/a) ๐ฅ + (c/a) = 0 2) (๐ฅ + b/2a)2 โ (b/2a)2 + (c/a) = 0 3) (๐ฅ + b/2a)2 = (b2 โ 4ac)/4a2 4) ๐ฅ = [-b ยฑ โ(b2 โ 4ac)]/2a |
Example: ๐ฅ2 + 4 ๐ฅ โ 5 = 0 1) (๐ฅ + 2)2 โ 4 โ 5 = 0 2) (๐ฅ + 2)2 = 9 3) Roots of the equation can be found using square root on both the sides ๐ฅ + 2 = -3 => ๐ฅ = -5 ๐ฅ + 2 = 3 => ๐ฅ = 1 |
Quadratic Method |
For quadratic equation, a ๐ฅ2 + b ๐ฅ + c = 0 Roots are given by ๐ฅ = [-b + โ (b2 โ 4ac)]/2a ๐ฅ = [-b – โ (b2 โ 4ac)]/2a For b2 โ 4 ac > 0, Quadratic equation has two real roots of different value For b2 โ 4 ac = 0, Quadratic equation has one real root. For b2 โ 4 ac < 0, Quadratic equation has no real root. |
Nature of roots of Quadratic Equation:
1. b2 โ 4 ac > 0 | Two distinct real roots |
2. b2 โ 4 ac = 0 | One real root |
3. b2 โ 4 ac < 0 | No real roots |
Algebraic Formulas
(a + b)2 = a2 + b2 + 2ab
(a – b)2 = a2 + b2 – 2ab
(a + b) (a โ b) = a2 โ b2
(๐ฅ + a) (๐ฅ + b) = ๐ฅ2 + (a + b) ๐ฅ + ab
(๐ฅ + a) (๐ฅ – b) = ๐ฅ2 + (a – b) ๐ฅ – ab
(๐ฅ – a) (๐ฅ + b) = ๐ฅ2 + (b – a) ๐ฅ โ ab
(๐ฅ – a) (๐ฅ – b) = ๐ฅ2 – (a + b) ๐ฅ + ab
(a + b)3 = a3 + b3 + 3ab (a + b)
(a – b)3 = a3 – b3 – 3ab (a – b)
(๐ฅ + ๐ฆ + z)2 = ๐ฅ2 + ๐ฆ2 + z2 + 2๐ฅ๐ฆ + 2๐ฆz + 2z๐ฅ
(๐ฅ + ๐ฆ – z)2 = ๐ฅ2 + ๐ฆ2 + z2 + 2๐ฅ๐ฆ – 2๐ฆz – 2z๐ฅ
(๐ฅ – ๐ฆ + z)2 = ๐ฅ2 + ๐ฆ2 + z2 – 2๐ฅ๐ฆ – 2๐ฆz + 2z๐ฅ
(๐ฅ – ๐ฆ – z)2 = ๐ฅ2 + ๐ฆ2 + z2 – 2๐ฅ๐ฆ + 2๐ฆz – 2z๐ฅ
๐ฅ3 + ๐ฆ3 + z3 – 3๐ฅ๐ฆz = (๐ฅ + ๐ฆ + z) (๐ฅ2 + ๐ฆ2 + z2 – ๐ฅ๐ฆ – ๐ฆz – z๐ฅ)
๐ฅ2 + ๐ฆ2 = ยฝ [(๐ฅ + ๐ฆ)2 + (๐ฅ – ๐ฆ)2]
(๐ฅ + a) (๐ฅ + b) (๐ฅ + c) = ๐ฅ3 + (a + b + c) ๐ฅ2 + (ab + bc + ca) ๐ฅ + abc
๐ฅ3 + ๐ฆ3 = (๐ฅ + ๐ฆ) (๐ฅ2 โ ๐ฅ๐ฆ + ๐ฆ2)
๐ฅ3 – ๐ฆ3 = (๐ฅ – ๐ฆ) (๐ฅ2 + ๐ฅ๐ฆ + ๐ฆ2)
๐ฅ2 + ๐ฆ2 + z2 – ๐ฅ๐ฆ – ๐ฆz โ z๐ฅ = ยฝ [((๐ฅ – ๐ฆ)2 + (๐ฆ โ z)2 + (z – ๐ฅ)2]
Basic formulas for powers
pm x pn = p m + n
{pm} / {pn} = p m – n
(pm)n = pmn
p-m = 1/pm
p1 = p
p0 = 1