Skip to content

Class X โ€“ Maths Formulas โ€“ Quadratic Equations

Quadratic Equations

1. Quadratic PolynomialP(๐‘ฅ) = a ๐‘ฅ2 + b ๐‘ฅ + c, where a โ‰  0
2. Quadratic Equationa ๐‘ฅ2 + b ๐‘ฅ + c, where a โ‰  0
3. Solution or root of the Quadratic EquationA real number ฮฑ is called the root or solution of the quadratic equation if a ฮฑ2 + b ฮฑ + c = 0
4. Zeroes of the polynomial P(๐‘ฅ)The root of the quadratic equation are called zeroes.
5. Maximum roots of quadratic equationsA polynomial of degree 2 can have max 2 roots.
6. Condition for real rootsA quadratic equation has real roots if b2 โ€“ 4ac > 0

Solving Quadratic Equation

Factorization
This method we factorize the equation by splitting the middle term b.
In, a ๐‘ฅ2 + b ๐‘ฅ + c = 0
Example: 6 ๐‘ฅ2 โ€“ ๐‘ฅ โ€“ 2 = 0
Steps: 1. First we need to multiply the coefficient of a and c. In this case: 6 x (-2) = -12
2. Splitting the middle term so that multiplication is -12 and the difference is the coefficient b
6 ๐‘ฅ2 + 3 ๐‘ฅ – 4 ๐‘ฅ โ€“ 2 = 0
3 ๐‘ฅ (2 ๐‘ฅ + 1) โ€“ 2(2 ๐‘ฅ + 1) = 0
(3 ๐‘ฅ โ€“ 2) (2 ๐‘ฅ + 1) = 0
3. Roots of the equation can be found by equating the factors to zero
3 ๐‘ฅ โ€“ 2 = 0 => ๐‘ฅ = 2/3
2 ๐‘ฅ + 1 = 0 => ๐‘ฅ = -1/2
Square Method
In this method we create square on LHS and RHS and then find the value.
a ๐‘ฅ2 + b ๐‘ฅ + c = 0
1) ๐‘ฅ2 + (b/a) ๐‘ฅ + (c/a) = 0
2) (๐‘ฅ + b/2a)2 โ€“ (b/2a)2 + (c/a) = 0
3) (๐‘ฅ + b/2a)2 = (b2 โ€“ 4ac)/4a2
4) ๐‘ฅ = [-b ยฑ โˆš(b2 โ€“ 4ac)]/2a
Example: ๐‘ฅ2 + 4 ๐‘ฅ โ€“ 5 = 0
1) (๐‘ฅ + 2)2 โ€“ 4 โ€“ 5 = 0
2) (๐‘ฅ + 2)2 = 9
3) Roots of the equation can be found using square root on both the sides
๐‘ฅ + 2 = -3 => ๐‘ฅ = -5
๐‘ฅ + 2 = 3 => ๐‘ฅ = 1
Quadratic Method
For quadratic equation,
a ๐‘ฅ2 + b ๐‘ฅ + c = 0
Roots are given by
๐‘ฅ = [-b + โˆš (b2 โ€“ 4ac)]/2a
๐‘ฅ = [-b – โˆš (b2 โ€“ 4ac)]/2a
For b2 โ€“ 4 ac > 0, Quadratic equation has two real roots of different value
For b2 โ€“ 4 ac = 0, Quadratic equation has one real root.
For b2 โ€“ 4 ac < 0, Quadratic equation has no real root.

Nature of roots of Quadratic Equation:

1. b2 โ€“ 4 ac > 0Two distinct real roots
2. b2 โ€“ 4 ac = 0One real root
3. b2 โ€“ 4 ac < 0No real roots

Algebraic Formulas

(a + b)2 = a2 + b2 + 2ab

(a – b)2 = a2 + b2 – 2ab

(a + b) (a โ€“ b) = a2 โ€“ b2

(๐‘ฅ + a) (๐‘ฅ + b) = ๐‘ฅ2 + (a + b) ๐‘ฅ + ab

(๐‘ฅ + a) (๐‘ฅ – b) = ๐‘ฅ2 + (a – b) ๐‘ฅ – ab

(๐‘ฅ – a) (๐‘ฅ + b) = ๐‘ฅ2 + (b – a) ๐‘ฅ โ€“ ab

(๐‘ฅ – a) (๐‘ฅ – b) = ๐‘ฅ2 – (a + b) ๐‘ฅ + ab

(a + b)3 = a3 + b3 + 3ab (a + b)

(a – b)3 = a3 – b3 – 3ab (a – b)

(๐‘ฅ + ๐‘ฆ + z)2 = ๐‘ฅ2 + ๐‘ฆ2 + z2 + 2๐‘ฅ๐‘ฆ + 2๐‘ฆz + 2z๐‘ฅ

(๐‘ฅ + ๐‘ฆ – z)2 = ๐‘ฅ2 + ๐‘ฆ2 + z2 + 2๐‘ฅ๐‘ฆ – 2๐‘ฆz – 2z๐‘ฅ

(๐‘ฅ – ๐‘ฆ + z)2 = ๐‘ฅ2 + ๐‘ฆ2 + z2 – 2๐‘ฅ๐‘ฆ – 2๐‘ฆz + 2z๐‘ฅ

(๐‘ฅ – ๐‘ฆ – z)2 = ๐‘ฅ2 + ๐‘ฆ2 + z2 – 2๐‘ฅ๐‘ฆ + 2๐‘ฆz – 2z๐‘ฅ

๐‘ฅ3 + ๐‘ฆ3 + z3 – 3๐‘ฅ๐‘ฆz = (๐‘ฅ + ๐‘ฆ + z) (๐‘ฅ2 + ๐‘ฆ2 + z2 – ๐‘ฅ๐‘ฆ – ๐‘ฆz – z๐‘ฅ)

๐‘ฅ2 + ๐‘ฆ2 = ยฝ [(๐‘ฅ + ๐‘ฆ)2 + (๐‘ฅ – ๐‘ฆ)2]

 (๐‘ฅ + a) (๐‘ฅ + b) (๐‘ฅ + c) = ๐‘ฅ3 + (a + b + c) ๐‘ฅ2 + (ab + bc + ca) ๐‘ฅ + abc

 ๐‘ฅ3 + ๐‘ฆ3 = (๐‘ฅ + ๐‘ฆ) (๐‘ฅ2 โ€“ ๐‘ฅ๐‘ฆ + ๐‘ฆ2)  

๐‘ฅ3 – ๐‘ฆ3 = (๐‘ฅ – ๐‘ฆ) (๐‘ฅ2 + ๐‘ฅ๐‘ฆ + ๐‘ฆ2)  

๐‘ฅ2 + ๐‘ฆ2 + z2 – ๐‘ฅ๐‘ฆ – ๐‘ฆz โ€“ z๐‘ฅ = ยฝ [((๐‘ฅ – ๐‘ฆ)2 + (๐‘ฆ โ€“ z)2 + (z –  ๐‘ฅ)2]

Basic formulas for powers

pm x pn  = p m + n

{pm} / {pn} = p m – n

(pm)n = pmn

p-m = 1/pm

p1 = p

p0 = 1